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ABSTRACT
In Magnetic Resonance Imaging (MRI) a given tissue

may have quite different intensities depending on its location
in the image volume. Such intensity inhomogeneities often
arise from what is usually called the bias field, and are due
to radio frequency inhomogeneities, variations in the static
magnetic field and the distance of the tissue to the receiving
coil. We present an efficient approach to determine such in-
homogeneities from a series of calibration scans, which take
less than 40 seconds to acquire. This enables us to efficiently
correct both T1 and T2 weighted images. We present the the-
oretical background, as well as typical results for phantom,
liver, pelvic and spine images.

Index Terms— Magnetic resonance imaging, Image en-
hancement, Image analysis, Biomedical image processing

1. INTRODUCTION

Ideal Magnetic Resonance Images (MRI) would associate
with any given tissue a single intensity value. However,
largely due to inhomogeneities in the static magnetic field,
the radio frequency field and the variable distances of tissue
to the receive coil, this is almost never the case. In clinical
practice, we have observed variations of up to a factor of ten
for a given tissue, for example in the case of spine images as
shown in Figure 4(a), where the inhomogeneities are particu-
larly severe.
Inhomogeneities particularly impact on contrast and can neg-
atively challenge clinical decision making. Images are diffi-
cult to analyse at a single window/level setting, since areas
can either be too dark or saturated. Intensity inhomogeneities
can cause the intensity distribution of two distinct tissues to
overlap. Image analysis algorithms, such as segmentation
and registration techniques working on image intensities, are
prone to failure. Intensity inhomogeneities become more pro-
nounced at higher field strengths and there is a continued need
for fast and accurate methods to correct for these inhomo-
geneities.
Previous approaches to remove the bias field can be classed
into three main categories: phantom based, image based and
physics based. Phantom based intensity correction estimate
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the inhomogeneities with a uniform phantom and correct sub-
sequent images with this estimate. However, as the inho-
mogeneities are different for each patient, ie. the inhomo-
geneities are dependent upon the loading of the system, it
is not possible to accurately compensate for patient specific
variations. Image based methods (eg. [1, 2]) are able to ret-
rospectively correct images but they all embody general as-
sumptions, for example about the shape and the smoothness
of the inhomogeneities. Their performance depends strongly
upon the initialization of the algorithm and they often take
several minutes per image to run. Finally, physics and se-
quence based approaches attempt to estimate the bias field
through a series of acquisitions. One example is the acqui-
sition of a proton density weighted image [3] or two images
acquired with minimal T1 effect (eg. [4, 5]). The drawback
of this approach is the relatively long repetition time (TR)
needed to reduce the T1 effect, which directly impacts on the
duration of such calibration scans (several minutes). These
approaches are hard to apply to abdominal imaging. For a
more complete description of intensity correction techniques
the reader is referred to one of the recent review papers on
this topic [6, 7].
Our approach falls into the third category, ie. it is a sequence
based approach. However, as we do not need to minimise any
T1 effects we can choose a short TR and thus acquire the nec-
essary information in <40 seconds. We are currently extend-
ing our method to combine it with image based techniques.
Our method uses a pair of object/patient specific calibration
scans with varying flip angles to compute a spatially varying
parameter that we callM0(x), where (x) is the pixel location.
In most of the following, we suppress mention of x since the
method works independently at each location (though it does
not have to be applied in this way). Our theoretical formu-
lation indicates that under certain conditions M0 accurately
represents the bias field, B, allowing us to correct any im-
ages acquired during the same exam. In our current imple-
mentation, we use a spoiled gradient recalled echo (SPGR)
sequence with varying flip angle, such as the one from Deoni
et al. [8]. However, the method is more generally applicable.
Section 2 presents the theoretical background of the tech-
nique. In Section 3 we describe the imaging protocol and
the results are shown in Section 4. Finally, Section 5 presents
the Discussion and Conclusions.
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2. THEORY

Our method uses a series (a pair seems to suffice) of fast
spoiled gradient echo (FSPGR) calibration images with dif-
ferent flip angles at the beginning of an MR exam, in order
to compute M0. As we will see, by choosing a very short
echo timeM0 effectively represents the bias field. The inho-
mogeneities in any image acquired during the same exam can
then be corrected by dividing the acquired image byM0. The
FSPGR signal at any voxel is given by the signal equation

Sideal = gρe−TE/T∗

2 sin α

(
1− e−TR/T1

1− cosα · e−TR/T1

)
(1)

The scanner gain g, repetition time TR, echo time TE and
flip angle α are sequence parameters that are independent of
the voxel location. The tissue parameters such as the proton
density ρ, longitudinal relaxation time T1 and the transverse
relaxation time T ∗

2
are each functions of the spatial location

x. However, the signal is often contaminated by a bias field
B(x). This can be modeled as a multiplicative field [2], re-
sulting in the observed Signal Sobs:
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2 sin α

(
1− e−TR/T1

1− cosα · e−TR/T1

)
B (2)

which can be re-arranged to give
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This is of the general form y = ax + b. By for example vary-
ing α, while keeping all other sequence parameters constant,
it is possible to estimate T1 andM0 by linear regression.

T1 = −

TR

lna
(4)

M0 =
b

1− a
(5)

Note that the calculation of T1 is independent of the bias field.
However, the calculation ofM0 is corrupted by the bias field
becauseM0 = gρe−TE/T∗

2 B. However, when TE is short, as
is often the case in practice, then Figure 1 confirms that for
a range of realistic T ∗

2
values e−TE/T∗

2 ≈ 1 is a reasonable
approximation. Under these circumstances, ie. short TE:

M0 = gρe−TE/T∗

2 B ≈ gρB (6)

M0 when computed from multiple FSPGR images with vary-
ing α and short TE is corrupted by the bias field, but contains
a negligible contribution from the transverse tissue relaxation
time T ∗2 .
Other images acquired during the same exam can then be

corrected by dividing the acquired image with the computed
M0.

Fig. 1. Calculated e−TE/T∗

2 for a range of TE and T ∗
2
. For

TE< 1.5msec the term e−TE/T∗

2 never drops below 0.95,
making e−TE/T∗

2 ≈ 1 a reasonable assumption.

Object Seq Coil acq matrix TR/TE α
Phantom T1 GR 1 256x192 3.9/1.9 35
Phantom T2 SE 1 256x224 2000/96.6 90
Liver T1 GR 2 288x128 7.9/4.2 30
Liver T2 SE 2 256x224 2000/96.6 90
Rectum T2 SE 2 384x256 3700/92.1 90
Spine T1 SE 3 512x256 420/13.1 90

Table 1. Imaging sequences used. T1/2 = T1/2 weighted;
GR=Gradient Echo; SE=Spin Echo and variations thereof.
Coil 1 = General purpose Flex Coil (GE). Coil 2 = 8 Channel
Phased Array Body Coil (GE). Coil 3 = 8 Channel Phased Ar-
ray Cervical Thoracic Lumbar Spine Coil (USA Instruments).

3. METHODS AND MATERIALS

Images covering the entire object were acquired on a Gen-
eral Electric (GE) 1.5T system. We first acquired calibration
images with DESPOT1 [8] at 3◦ and 15◦ using a 256x192
acquisition matrix, with TR/TE 3.4/1.2msec. The other se-
quences used in this paper are summarised in Table 1 and
have been chosen as they are part of standard clinical pro-
tocols. M0 was computed from the calibration images and
re-sliced, using linear interpolation, to the orientation and res-
olution of the images to be corrected. A large kernel median
filter was applied toM0 to reduce noise. The original images
were corrected by division withM0. For comparison with our
method, the spinal MR images were also corrected with GE
Healthcare’s PURE (Phased Array Uniformity Enhancement)
technique and a local implementation of Styner’s algorithm
[1]. PURE uses a different type of calibration scan to correct
for inhomogeneities.

4. RESULTS

Representative images before and after correction are shown
in Figures 2, 3 and 4. Numerical results are given in Table 2.
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Fig. 2. T1W image (a) before (red dashed) and (b) after (green
solid) correction with corresponding line plot shown in (e).
Analogous for a T2W image, (b), (d) and (f). In both cases
the corrected image, (b) and (d), demonstrates a more homo-
geneous appearance and the line plots resemble more closely
the expected step function.

For phantom images, Figure 2, we show line plots of the
intensities for the T1 and T2 weighted images before (dashed
red) and after (solid green) correction. The corrected image
consistently demonstrate a more homogeneous appearance,
and the line plots show that the corrected image resembles
more a step like function when compared to the line plot of
the uncorrected image whose intensity gradually decreases.
Figure 3 shows that the technique successfully works for

T2 weighted liver imaging. There is a significant reduction
of intensity around the arrow, while there is an increase in in-
tensity around the triangle, resulting in a more homogeneous
appearance.
Finally, Figure 4 shows a sagittal T1 weighted image

of the spine, which demonstrates strong intensity inhomo-
geneities as the receive coil is embedded in the table. The
intensities of tissue in proximity to the table are much higher
and there is a rapid fall off as the distance from the coil
increases. Figure 4(a) shows the original image, while (c)
shows the results after applying Styner’s algorithm. In (c)
it is possible to see some more details around the head, rib
bone (left arrow) and spine (middle arrow). Applying PURE
to the original image results in further improvements around
the spine and aorta (see middle arrow in 4(d)). However, in
both cases large areas are still nearly invisible at the chosen
display settings and the fat at the back (right arrow) still has
a large range of intensity values. Using our technique (b) re-

(a) (b)

Fig. 3. T2weighted liver image before and after correction
using the new approach. The intensity is increased around the
arrow and decreased around the triangle

Object σ/μ σ/μ after correction
Phantom T1W 0.1562 0.1078
Phantom T2W 0.1576 0.0973
Liver T1W 0.2886 0.2140
Liver T2W 0.5692 0.3612
Rectum T2W 0.2093 0.1275
Spine T1W 0.2438 0.0951

Table 2. Standard deviation divided by the mean (σ/μ) of the
signal intensities for homogeneous regions of interests for T1

and T2 weighted sequences. For every homogeneous tissue
class a marked reduction in the parameter, consistent with the
removal of bias field, is observed.

sults in a homogeneous image. Rib bone (left arrow), aorta
and spine (middle arrow) and the fat (right arrow) can all be
seen at the same time without loss of contrast between differ-
ent tissue classes. The intensity of the fat at the back of the
spine is very uniform from the top to the bottom of the image.

A numerical indication for the reduction in bias field is given
by taking the standard deviation σ of a region and dividing
by the mean μ of the same region. For homogeneous regions
the value of this parameter should be relatively small. A re-
duction in this parameter means that the histogram for this
class becomes more narrow. Table 2 gives the numerical re-
sults for a number of different objects for T1 and T2 weighted
sequences. Table 2 shows that σ/μ after the application of
our technique is in every case significantly smaller than on
the original images, which is in agreement with the visual im-
provements observed.

5. DISCUSSION AND CONCLUSIONS

Table 1 and 2 show that we have successfully used our tech-
nique on numerous objects, sequences and coils. Obviously,
the framework for the acquisition of our calibration images is
in principle the same as the one used in the computation of
the longitudinal relaxation time T1. However, we highlight
that with an appropriate choice of imaging parameters, M0
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Fig. 4. (a) Original image and (b) after application of the
approach described in Section 2, (c) Styner’s algorithm and
(d) PURE. Arrows point to some key areas.

can be used for intensity inhomogeneity correction. There
are three main advantages of using M0 to correct intensity
inhomogeneities over the reconstruction of synthetic images
from parametric T1 maps (for an example of this see eg. [9]).
Firstly, it is possible to correct both T1 and T2 weighted im-
ages. The reconstruction of synthetic images from parametric
maps, requires high resolution T1 and T2 data, which require
substantial imaging time. Secondly, as we are only interested
in the shape ofM0 we can easily deal with noise, eg. through
median filtering or surface fitting. The computation of para-
metric images is a noisy process and reconstructing images
from noisy raw data will result in noisy images. Thirdly, the
shape of M0 can be obtained with a reduced image matrix,
thereby offering further speed improvements.
We have presented a technique to remove inhomogeneities in
MRI by computing M0 from a series of calibration images
with varying flip angle. The short TR and the ability to re-
duce the imaging matrix enables the rapid acquisition of all
calibration images (< 40seconds). We have shown that our
technique successfully removes inhomogeneities on phantom,
liver, pelvic and spine T1 and T2 weighted images acquired
with a range of coils and that it outperforms existing tech-
niques. In the future, we plan to integrate our approach with
image based methods to further improve the performance of
the algorithm by adding a suitable regulariser.
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